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Abstract

This NASA Technical Memorandum describes an optimal ensemble canonical correlation

forecasting model for seasonal precipitation. Each individual forecast is based on the canon-

ical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal

functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the

mean square error of each individual forecast. An estimate of the mean square error of a CCA

prediction is made also using the spectral method. The error is decomposed onto EOFs of the

predictand and decreases linearly according to the correlation between the predictor and pre-

dictand. Since new CCA scheme is derived for continuous fields of predictor and predictand,

an area-factor is automatically included. Thus our model is an improvement of the spectral

CCA scheme of Barnett and Preisendorfer (1987). The improvements include (i) the use of

area-factor, (ii) the estimation of prediction error, and (iii) the optimal ensemble of multiple

forecasts. The new CCA model is applied to the seasonal forecasting of the United States

(US) precipitation field. The predictor is the sea surface temperature (SST). The US Cli-

mate Prediction Center’s reconstructed SST (1951-2000) is used as the predictor’s historical

data. The US National Center for Environmental Prediction’s optimally interpolated pre-

cipitation (1951-2000) is used as the predictand’s historical data. Our forecast experiments

show that the new ensemble canonical correlation scheme renders a reasonable forecasting

skill. For example, when using September-October-November SST to predict the next sea-

son December-January-February precipitation , the spatial pattern correlation between the

observed and predicted are positive in 46 years among the 50 years of experiments. The

positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent

performance of the forecasting model. The forecasting skill can be further enhanced when

several predictors are used.
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1 INTRODUCTION

The great economic significance of long-term forecasting, ranging from monthly to annual,

provides enormous opportunities for the forecasting research. However, long-term precipi-

tation forecast is extremely difficult to reach satisfactory level of accuracy. Numerous fore-

casting methods have been developed to improve the forecasting, yet few have systematic

estimate of the forecasting product’s quality. Both statistical models and dynamical general

circulation models (GCM) have been explored. Despite the great potential of the coupled

GCM, its forecasting ability is still limited due to numerous unknown mechanisms, includ-

ing land-surface processes and cloud structure. The chaotic nature of nonlinear dynamics

requires both spatially and temporally dense observations to limit the computing drift when

solving a stack of nonlinear differential equations in a GCM. It is not conclusive yet whether

the statistical or dynamical model is the best for forecasting. At the US Climate Prediction

Center (CPC), it was stated in 1998 that “neither the dynamical nor the statistical models,

as a group, perform significantly better than the other” (Barnston and He, 1998). CCA,

OCN (optimal climate normals), and CA (constructive analogue) are the official statistical

forecasting models used in CPC. These statistical results are compared with the coupled

GCM model forecasts. A subjective determination is made when announcing the NOAA’s

official long term forecasting.

This NASA Technical Memorandum proposes a systematic method for error estimate

of statistical forecasting by using a spectral approach with empirical orthogonal functions

(EOFs) basis (Shen et al., 1998). The paper also proposes an ensemble statistical forecasting

scheme, which is an ensemble canonical correlation analysis. Our canonical correlation anal-

ysis (CCA) is developed for two spatially continuous fields and is a slight improvement of the

scheme of Barnett and Preisendorfer (1987), referred to as BP-CCA. Our error is assessed by

the mean square error field and the estimate is applied to the continuous canonical correlation

analysis, referred to as C-CCA. Since our error assessment is an a priori estimate, it provides
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an estimate on the forecasting quality at the same time when the forecasting is made. Thus,

the error assessment is different from the traditional cross validation approach, which is a

posteriori approach and assesses the error after the occurrence of the forecasting event.

The error field has a spatial structure, large over the places of low forecasting skill and

small over the places of high forecasting skill. Thus, the estimated error indicates the spatial

inhomogeneity of the forecasting difficulty and assesses the quality of forecasting. Another use

of the error is for optimal ensemble forecasting. It is common knowledge that when making

optimization related to a stochastic process, the error information has to be known. Thus, in

addition to the a priori assessment of the forecast quality, the error is crucial when optimally

combining several forecasts. In a linear ensemble forecasting, the weight of a particular

forecast in the ensemble is inversely proportional to this forecast’s mean square error.

Our inclusion of area-factor, optimal ensemble of several forecasts, and error estimate

constitute a new development of the statistical forecasting method, which has not only added

more features to the BP-CCA but also improved the forecasting accuracy.

The classical CCA algorithm requires an inversion of cross-covariance and auto-covariance

matrices (see Appendix A). In the climate forecasting practice, all these matrices are not full

rank because of the short history of climate observations. The BP-CCA scheme in the EOF

space avoided the inversion of matrices of non-full rank. BP-CCA was a milestone work and

made it possible to use CCA as an operational forecasting tool. According to Kim and North

(1998, 1999), CCA is an accurate method compared with other statistical methods, such as

the methods of POP (principal oscillation pattern) (von Storch and Zwiers, 1999), Markov

(Xue, 2000), EOF extrapolation (Kim and North, 1998), and MCA (maximum covariance

analysis) (Lau and Wu, 1999). CPC and Canadian Climate Center are using the BP-CCA for

long term forecasting of temperature and precipitation. Therefore, it is important that the

method be improved in a timely fashion, if it is possible. Our inclusion of the area-factor can

reduce the noise of the high latitude data and hence is expected to lead to better accuracy.

Further, because of our error assessment formula, the forecasting quality at a given location
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is assessed simultaneously as the forecast is issued. These error estimates are crucial to

optimally combine the forecasts from different models and data to form an optimal ensemble

forecast.

US seasonal precipitation is a difficult predictand because of its large variance. However,

the clear impact of El Nino Southern Oscillation (ENSO) on the US recitation indicates that

SST does have potential predictability to the US precipitation. If so, our improved CCA,

which is supposed to be more accurate than the existing statistical tools, should catch a good

part of the precipitation signal. Our experiments validated the above assumption.

In our forecasting experiments, the predictor is the sea surface temperature (SST). The

US Climate Prediction Center’s reconstructed SST (1951-2000) is used as the predictor’s his-

torical data. The US National Center for Environmental Prediction’s optimally interpolated

precipitation (1951-2000) is used as the predictand’s historical data. Our forecast experiments

show that the new ensemble canonical correlation scheme renders a reasonable forecasting

skill. For example, when using September-October-November (SON) SST to predict the

January-February-March precipitation of the next year, the spatial pattern correlation be-

tween the observed and predicted are positive in 46 years among the 50 years of experiments.

The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent

performance of the forecasting model. The forecasting skill can be further enhanced when

careful selection of ocean basins is made and more predictors are used.

The context of this technical memorandum is arranged as follows. Section 2 illustrates the

mathematics for the C-CCA. The discretization of the C-CCA is described in Section 3, where

the symmetry of the covariance matrix with an area-factor is emphasized. The prediction as a

multi-variate regression of the canonical variables is presented in Section 4. Section 5 studies

the prediction error estimation and Section 6 shows optimal procedures of combining several

different forecasts. The characteristics of the US precipitation are contained in Section 7.

The US seasonal forecasting results are included in Section 8, and Section 9 gives summary

and conclusions.
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2 C-CCA: A CANONICAL CORRELATION ANALYSIS BE-

TWEEN TWO CONTINUOUS CLIMATE FIELDS

The CCA forecasting scheme is a regression between two canonical variables U(t) and V (t′),

which are weighted integrals of two corresponding variables, predictor and predictand. Here t

and t′ = t+∆t signify time, and ∆t is the lead time of forecast for the predictand. The higher

the absolute value of the correlation between the two random variables, the more significant

the regression, and consequently, the stronger linear relationship between the two random

variables. To make the regression statistically significant, the absolute value of the correlation

between the two canonical variables is maximized by choosing optimal weight functions.

Let random variables X(x, t) and Y (y, t) represent the predictor and predictand fields,

respectively. Here x is the position vector defined in the predictor domain ΩX , y is the

position vector in the predictand domain ΩY , and t signifies time. The corresponding weight

functions are u(x) for X and v(y) for Y , which are called canonical correlation patterns and

are to be determined by an optimization. Two weighted integrals are defined by

U(t) =
∫

ΩX

dΩX X(x, t)u(x) , (1)

V (t) =
∫

ΩY

dΩY Y (y, t)v(y) . (2)

The unit of the weight function u(x) is [X-unit]−1 [area]−1 and that of v(y) is [Y-unit]−1

[area]−1. Thus, the canonical variables U(t) and V (t) are dimensionless. Since the theory

to be developed is still a stationary theory, the processed data of X and Y are often the

standardized and detrended anomalies. The area is standardized by R2, where R is the

radius of Earth.

Weight functions often imply certain physical meanings of U(t) and V (t). For instance, if

u(x) =
1

Area of ΩX
,

and if X is dimensionless, such as the standardized anomaly, then U(t) is the spatial average

of the X field over the domain ΩX . If X is not standardized, a quantity, such as the average of
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the spatial standard deviation, should be included in the denominator of the above formula,

in order to make U(t) dimensionless.

The CCA scheme searches for the optimal weight functions u(x) and v(y) so that the

correlation between U and V reaches extrema. The corresponding weight functions u(x) and

v(y) are called the canonical correlation patterns. The extrema can be either positive or

negative. As will be seen later, the canonical patterns will be determined by an eigenvalue

problem. The orthonormal eigenvectors are unique up to a positive or negative sign. There-

fore, one can select the eigenvectors so that the correlations are always non-negative, and the

correlation’s extrema can be regarded as maxima. The details of the eigenvector selection is

given later.

The correlation between U and V is denoted by ρ. Hence, it is our intention to find the

optimal weight functions u(x) and v(y) such that

ρ = max Corr(U, V ). (3)

Since the weight functions are to be determined, one can always adjust them so that U and

V have unit variance. The above correlation optimization problem is then equivalent to a

covariance optimization problem

ρ = max Cov(U, V ) (4)

under a constraint:

Var(U) = Var(V ) = 1. (5)

This optimization problem can be solved by the method of Lagrange multiplier and the

unknown functions u and v can be determined by integral equations. The Lagrange function

can be written as

J [u, v] = 〈UV 〉+ ζ
[
〈U2〉 − 1

]
+ η

[
〈V 2〉 − 1

]
. (6)

Here, ζ and η are Lagrange multipliers, which are dimensionless and have a simple relationship

with ρ (cf., eqs. (12) and (13)), and 〈·〉 denotes ensemble average.
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The Lagrange function can be written into another form

J [u, v] =
∫

ΩX

dΩX

∫

ΩY

dΩY ΣXY (x,y)u(x)v(y)

+ζ

[(∫

ΩX

dΩX

∫

ΩX
′
dΩX

′ ΣXX(x,x′)u(x)u(x′)
)
− 1

]

+η

[(∫

ΩY

dΩY

∫

ΩY
′
dΩY

′ ΣY Y (y,y′)v(y)v(y′)
)
− 1

]
,

where

ΣXX(x,x′) = 〈X(x, t)X(x′, t)〉, (7)

ΣY Y (y,y′) = 〈Y (y, t)Y (y′, t)〉, (8)

are covariance functions and

ΣXY (x,y) = 〈X(x, t)Y (y, t)〉 (9)

is the cross-covariance function between the X and Y fields.

The optimization conditions are

δJ

δu
= 0

and

δJ

δv
= 0,

which lead to the following integral equations for u and v:

∫

ΩY

dΩY ΣXY (x,y)v(y) + 2ζ

∫

ΩX
′
dΩX

′ ΣXX(x,x′)u(x′) = 0, (10)
∫

ΩX

dΩX ΣXY (x,y)u(x) + 2η
∫

ΩY
′
dΩY

′ ΣY Y (y,y′)v(y′) = 0. (11)

In the above, the integrations in each equation leave a free independent variable. The first

equation’s free independent variable is x in the predictor domain ΩX and the second equa-

tion’s y in the predictand domain ΩY . These two equations form an eigenvalue problem for

the eigenfunction (u(x), v(y)) and eigenvalue 4ζη. This eigenvalue is related to the correlation

ρ between U and V . It will be shown that the relationship is

√
4ζη = ρ. (12)
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More specifically,

ζ = η = −ρ/2. (13)

Linear integral equations are usually solved by integral transforms or series expansions.

Here, the series expansion with EOFs basis is used to solve the above integral equations

(10)-(11).

EOFs are defined for X-field and Y-field, respectively, and they are the eigenfunctions of

auto-covariance functions,

∫

ΩX
′
dΩX

′ ΣXX(x,x′)ψn(x′) = λX
n ψn(x),

∫

ΩY
′
dΩY

′ ΣY Y (y,y′)φn(y′) = λY
n φn(y).

The EOFs are orthonormal and form a complete basis for the vector space of the field.

Namely,

∫

ΩX

dΩX ψm(x)ψn(x) = δmn,

∞∑

n=1

ψn(x)ψn(x′) = δ(x− x′),

where δmn is the Kroneker delta that is equal to one when m = n and zero otherwise, and

δ(x − x′) is the Dirac delta defined as a generalized function. For any continuous function

f(x) over ΩX , it has the property that

∫

ΩX

dΩX δ(x− x′)f(x) = f(x′).

According to the above relations, the unit of X’s EOF is [area]−1/2, and the unit of λX
n is ([X

unit]2 [area]). The EOFs for the predictand have the same orthogonality and completeness

properties and similar units.

The field and weight functions are expanded in terms of EOFs:

X(x, t) =
∑
n

Xn(t)ψn(x)
√

λX
n , (14)

Y (y, t) =
∑
m

Ym(t)φm(y)
√

λY
m, (15)
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u(x) =
∑
n

unψn(x)/
√

λX
n , (16)

v(y) =
∑
m

vmφm(y)/
√

λY
m. (17)

In the above, Xn(t), Yn(t), un, and vn(y) are dimensionless, but the unit of u(x) is ([X unit]−1

[area]−1) and the unit of v(y) is ([Y unit]−1 [area]−1).

The cross-covariance function can also be expressed in terms of EOFs

ΣXY (x,y) =
∑
m,n

〈XnYm〉
√

λX
n

√
λY

mψn(x)φm(y). (18)

The weighted integrals U and V defined by (1) and (2) now become

U =
∑
n

unXn, V =
∑
m

vmYm. (19)

The above summations are infinite series, indices m and n running from 1 to ∞. If

one truncates m upto q and n upto p, then an optimization problem of max ρ in a finite-

dimensional spectral space can be obtained.

In the spectral space, the correlation between U and V and its constraints can be expressed

as

ρ = max
(
ũ′Σ̃XY ṽ

)
, (20)

ũ′ũ = 1, ṽ′ṽ = 1, (21)

because

〈XmXn〉 = δmn, 〈YmYn〉 = δmn.

In the above, the cross-covariance matrix in the spectral space is

Σ̃XY (m,n) = [〈XnYm〉] , (22)

and

ũ′ = (u1, u2, · · · , up), ṽ′ = (v1, v2, · · · , vq). (23)

The superscript ”′” of a matrix indicates the transpose of the matrix. So, ũ′ṽ is the dot

product of two vectors. The dimensions of the cross-covariance matrix are the truncation

order p of the EOF expansion of X by the truncation order q of Y .
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In the spectral space, the eigenvalue problems (10) and (11) become

Σ̃XY ṽ = −2ζũ, (24)

Σ̃Y X ũ = −2ηṽ. (25)

Substituting one into the other, one obtains an eigenvalue problem of a symmetric matrix,

Σ̃XY Σ̃Y X ũ = λũ, (26)

or equivalently

Σ̃Y XΣ̃XY ṽ = λṽ. (27)

In general, the eigenvalues of B′B are non-negative for any matrix B. Our eigenvalue λ is

specifically equal to the square of the correlation, i.e., λ = ρ2. The proof of this is simple.

Multiplying (24) by ũ′ and (25) by ṽ′, then multiplying the two resulting equations, and

finally using (20) and (21), one can deduce that 4ζη = λ = ρ2. In addition, one can have

ρ = −2ζ = −2η, Σ̃XY ṽ = ρũ, Σ̃Y X ũ = ρṽ. (28)

The correlation between two fields reveals the phase differences of the two fields. When

positive anomalies of U and V appear at the same time, then the correlation is one. According

to the definition of the correlation ρ, the value of ρ must be between −1 and +1. The

correlation-eigenvalue relationship ρ2 = λ has two solutions ρ = ±λ. Since both ũ and −ũ

are both eigenvectors of the eigenvalue problem (26), one can choose the sign of ũ so that

ρ = 〈U(t)V (t)〉 ≥ 0. Next section will show how to choose the correct sign.

3 DISCRETE CCA WITH AREA-FACTORS

The above continuous theory can only become computationally possible when the covariance

functions ΣXX , ΣY Y and ΣXY , or Σ̃XY are known. However, in almost all the climatological

applications, they are unknowns. A discrete version of CCA must be considered. Here we

derive the discrete CCA from the integral version described in the previous section, hence the
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area-factor is automatically included. The inclusion of the area-factor is important when the

data are defined over the uniform latitude-longitude grid boxes and when the domains ΩX

and/or ΩY contain high latitude regions, since the data over the low latitude boxes represent

larger areas and are, thus, weighted higher. The details of the covariance matrices and EOFs

with area-factor are described in Shen et al. (1998).

The exact eigenvalue problem is

∫

Ω
ρ(x,x′)ψk(x′) dΩ′ = λkψk(x). (29)

Here ψk(x) is the kth EOF (or mode) and λk is the variance (eigenvalue) of X(x) on the kth

mode (k = 1, 2, · · ·). The approximate eigenvalues of the above continuum eigen-problem can

be estimated by a discretization procedure given by

∑

j

ρ̂ij v̂
(k)
j = λ̂kv̂

(k)
i , (30)

where

[ρ̂ij ] =
[√

Ai ρ(xi, bxj)
√

Aj

]
(31)

is the covariance matrix with area-factor, and

v̂
(k)
j = ψk(xj)

√
Aj , (32)

are the eigenvectors with area-factor and Aj is the area associated with the grid xj . For

uniform latitude-longitude grid boxes, one has

Aj = cosφj∆θ∆φ (33)

where φj is the latitude of xj and the ∆θ and ∆φ are the zonal and meridional box dimensions

respectively, which are measured in radians. The linear spatial unit (i.e., the length unit) is

in the radius of earth: R = 6376 km.

With the above preparation, if the area of the region associated with xi is denoted by Ai

and that associated with yj by Bj , the covariance matrices with area-factor are

ΣA
XX =

[√
Ai〈XiXj〉

√
Aj

]
, (34)
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ΣA
Y Y =

[√
Bi〈YiYj〉

√
Bj

]
, (35)

ΣA
XY =

[√
Ai〈XiYj〉

√
Bj

]
. (36)

The discrete EOFs are eX
n and eY

m. They are related to the continuous EOFs by

eX
n (i) = ψn(xi)

√
Ai, eY

m(j) = φm(yj)
√

Bj . (37)

Here eX
n (i) is the ith element of the vector eX

n . The magnitude of eX
n is equal to one, since

JX∑

i=1

(
eX

n (i)
)2

=
JX∑

i=1

(
ψn(xi)

√
Ai

)2 ≈
∫

ΩX

dΩX ψ2
n(x) = 1,

where JX is the total number of grid points in domain ΩX .

In practice, the discrete EOFs are computed from the eigenvalue problems of the covari-

ance matrices with area factors.

ΣA
XXeX

n = λX
n eX

n ,

ΣA
Y Y eY

n = λY
n eY

n .

The correlation ρ defined by (3) has a discrete version

ρ = Corr(XA · uA,YB · vB), (38)

where the vectors are defined by

XA(t) =
[√

AiX(xi, t)
]
, (39)

YB(t) =
[√

BiY (yi, t)
]
, (40)

uA =
[√

Aiu(xi)
]
, (41)

vB =
[√

Biv(yi)
]
. (42)

The maximization of the correlation ρ can then be realized by maximizing the covariance

ρ = u′AΣA
XY vB, (43)

under the constraints

u′AΣA
XXuA = 1, (44)

v′BΣB
Y Y vB = 1. (45)
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In order to find the maximal correlation ρ by solving a single eigenvalue problem, both the

fields and weight functions are expressed in terms of discrete EOF. The EOF expansions are

XA(t) ≈
p∑

n=1

Xn(t)eX
n

√
λX

n , (46)

YB(t) ≈
q∑

m=1

Ym(t)eY
m

√
λY

m, (47)

uA ≈
p∑

n=1

uneX
n /

√
λX

n , (48)

vB ≈
q∑

m=1

vmeY
m/

√
λY

m. (49)

The discussion about the truncation orders p and q is given in the appendix.

The requirement

1
KX

KX∑

t=1

Xm(t)Xn(t) = δmn,
1

KY

KY∑

t=1

Ym(t)Yn(t) = δmn

forces the lengths of the data streams for predictor and predicatand to be the same, i.e.,

KX = KY = K. The covariance matrices between the data point i and the data point j are

computed by

ΣA
XX(i, j) =

1
K

K∑

t=1

X(xi, t)X(xj , t), (50)

ΣA
Y Y (i, j) =

1
K

K∑

t=1

Y (yi, t)Y (yj , t), (51)

ΣA
XY (i, j) =

1
K

K∑

t=1

X(xi, t)Y (yj , t). (52)

(53)

The cross-covariance matrix in the EOF space is

Σ̃XY = [〈XnYm〉]p×q . (54)

Its transpose is

Σ̃′XY = Σ̃Y X . (55)

The maximization of the correlation ρ leads to the following eigenvalue problem for ũ:

Σ̃XY Σ̃Y X ũ = ρ2ũ. (56)
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Similarly, the eigenvalue problem for ṽ can be derived as well:

Σ̃Y XΣ̃XY ṽ = ρ2ṽ. (57)

In practical computing, the cross-covariance matrix in the EOF space is calculated by

time average

Σ̃XY ≈ 1
K

K∑

t=1

Xn(t)Ym(t), (58)

where Xn(t) is given by one of the following three expressions

Xn(t) =
1√
λX

n

(
eX

n

)′
XA

=
JX∑

i=1

1√
λX

n

eX
n (i)X(xi, t)

√
Ai

=
JX∑

i=1

1√
λX

n

ψn(xi)X(xi, t)Ai. (59)

Using what expression depends on the available types of EOFs. The quantity Ym(t) can be

computed in the similar way.

4 MULTIVARIATE REGRESSION FOR ANOMALY PRE-

DICTION

Our prediction method is a linear regression based upon the data of the predictor and predic-

tand. The predictand is a linear combination of the predictor. The predictand and predictor

can be defined either on points or regions, although they are often defined on grid points.

Of course, the regression is meaningful only when there is an approximate linear relationship

between the predictor and predictand. The regression is statistically significant only when

the scatter diagram of the data are not too far away from the regression line (or the regres-

sion plane in the case of multivariate). This condition is equivalent to that the correlation

between the two fields is large.

In the case of single-variate, the regression line

y = bx + x0
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is statistically significant, only when the data point (xi, yi) are close to the line. The slope is

b = ρσy/σx, where ρ is the sample correlation, σx and σy are the sample standard deviations

of the x-data and y-data, respectively. How close the points are to the regression line is

measured by the sample correlation, ρ, computed from the data. The closer the absolute

value of ρ is to one, the closer the points to a line, and consequently, the more significant the

regression. For example, when having 15 data points, the 5% significance level requires the

correlation not less than 0.514.

Our climate prediction uses multivariate regression, which is a linear approximation to

a nonlinear relationship. The correlation between the two fields is defined in the previous

sections, and computed by the CCA algorithms. Our linear approximation is optimal in the

sense of the maximization of the correlation between the two fields.

Our linear prediction in the physical space can be written as

Y (yi, t
′) =

∑

j

BijX(xj , t). (60)

Here, the predictand is at time t′ = t+∆t, the predictor is at time t, the “slope” matrix B is

to be found, and the “intercept” vector is set to be zero since both Y and X are anomalies.

We will use the canonical variables and canonical correlation patterns, together with EOFs,

to express the fields and then find the “slope” matrix B. The correlation between the X-field

and Y -field is the key parameter in the regression.

If the truncation order p > q, then the correlation between U (k)(t) and V (k)(t) is zero

when k > q. The same is true for the case q > p. Thus, we always make EOF truncation order

for X and Y be the same: p = q. The CCA eigenvalue problem has p non-zero eigenvalues.

When s = 2p−K + 1 > 0 (where K is the length of the data stream), the first s eigenvalues

are equal to one, which implies a perfect linear relationship that is certainly impossible. Thus,

choosing a large p may result in over-fit. In this paper, we always choose p < (K − 1)/2 and

none of the eigenvalues is equal to one.
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The p eigenvectors are mutually orthogonal. The canonical variables are

U (k)(t) =
p∑

n=1

u(k)
n Xn(t), (61)

V (k)(t′) =
q∑

n=1

v(k)
n Yn(t′), k = 1, 2, · · · , p. (62)

Now, the sign of ũ(k) needs to be determined to guarantee the positivity of ρk. One can

calculate ρ using

γk =
1
K

K∑

t=1

U (k)(t)V (k)(t + ∆t).

If γk is positive, then ρk = γk and ũ(k) does not change sign. Otherwise, γk < 0, then

ρk = −γk and ũ(k) is changed to −ũ(k). After this operation, the correlation at each mode

(k) is non-negative.

It is worthwhile to note that the operations above are among the dimensionless variables.

Because the matrices [u(k)
n ]p×p and [v(k)

m ]p×p are orthogonal matrices, their inverses are equal

to their transposes. Such an inverse operation for a matrix is physically meaningful only

when the matrix is dimensionless.

The inverse of the matrix equations (61) and (62) leads to

Xn(t) =
p∑

k=1

u(k)
n U (k)(t), (63)

Yn(t′) =
p∑

k=1

v(k)
n V (k)(t′). (64)

The field X in the spectral space is expressed by the sum of the products of the canonical

variable U (k) and eigenvector ũ(k). The eigenvector ũ(k) is thus called the canonical pattern

in spectral space. Its physical space correspondence is u(k)
A given by formula (48).

Please note that, for the purpose of one-tier prediction, the predictand time t′ is larger

than the predictor time t by ∆t and, thus, the cross-covariance matrix Σ̃XY in this section

is a lagged cross-covariance. The lag time is t′ − t = ∆t.

The vectors (U (1), U (2), · · · , U (p))′ and (V (1), V (2), · · · , V (p))′ are all in p-dimensional vec-

tor space. There must exist a unique transform matrix which transform one to the other.
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Let this transformation be written as

V (k) =
p∑

l=1

FklU
(l) + bk, k = 1, 2, · · · , p. (65)

The formulas

〈V (k)U (l)〉 = ρkδkl, (66)

〈U (k)〉 = 0, 〈
(
U (k)

)2〉 = 1, (67)

〈V (k)〉 = 0, 〈
(
V (k)

)2〉 = 1 (68)

imply that

V (k)(t′) = ρkU
(k)(t), k = 1, 2, · · · , p. (69)

The prediction is therefore made for t′ = t + ∆t when the predictor at t is known:

X(x, t)− > Xn(t)− > U (k)(t)− > V (k)(t′)− > Yn(t′)− > Y (y, t′).

The equation (69) is thus the main prediction equation. The predictand at t′ is

Ŷ (y, t′) =
p∑

n=1

( p∑

k=1

v(k)
n ρkU

(k)(t)

) √
λY

n φn(y). (70)

This is the one-tier prediction scheme: knowing the predictor at time t and predicting

the predictand at t′ = t + ∆t. The CCA scheme can also be applied to the so called two-

tier forecasting: forecasting the predictor from time t to time t′ = t + ∆t by a method and

predicting the predictand at time t′ from the predictor also at time t′ by another method.

CCA can also be used as the latter method. The CCA scheme is exactly the same, except

that the lagged cross covariance matrix should be replaced by cross-covariance matrix without

time lag, i.e. ∆t = 0.

5 ESTIMATE OF THE PREDICTION ERROR

This section estimates the mean square error (MSE) of prediction. The importance of this

error estimate is three fold. First, it gives an instantaneous assessment of the forecasting
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quality. The smaller the error, the more accurate the forecast. Second, the MSE is directly

related to the correlation skill of the prediction which is often used to assess the quality of a

prediction. Third, the MSE errors are needed to compute the optimal weights for combining

the multiple forecasts to form an optimal ensemble forecast.

The CCA scheme requires the fields to be stationary. The computing algorithm requires

the fields to be ergodic, i.e. the ensemble mean can be replaced by time mean for a long

time. Our estimated error, as an ensemble value, cannot reflect the fluctuation of the fields

according to time. However, if the data used in the prediction are changed, then the error

should reflect this change. One may regard an observational network as a filter. When a filter

is changed and the filtered results should change accordingly. Thus, the time dependence of

the error is on the observational data and the data processing method, not on the intrinsic

fluctuations of the fields. Thus, for a given observational network and a given data-processing

method, our forecasting error is time independent.

The error field is

ε2(y) = 〈
(
Y (y, t′)− Ŷ (y, t′)

)2〉, (71)

where Y is the unknown true field to be predicted, and Ŷ is the prediction that approximates

Y . The prediction skill of Ŷ is often measured by its correlation with the original field Y ,

defined by

r =
〈Y Ŷ 〉√
〈Y 2〉〈Ŷ 2〉

. (72)

From above two equations one can derive

r =
1
2




√
〈Y 2〉
〈Ŷ 2〉 +

√√√√〈Ŷ 2〉
〈Y 2〉 −

ε2√
〈Y 2〉〈Ŷ 2〉


 . (73)

Several special cases are interesting. Case 1 is the perfect prediction: ε = 0 implies r = 1.

Case 2 is the worst wrong prediction: ε2 = 〈Y 2〉 + 〈Ŷ 2〉 implies r = 0. And case 3 is the

random prediction: ε2 = 〈Y 2〉 implies r = (1/2)
√
〈Ŷ 2〉/〈Y 2〉. A sub-case of this is Ŷ 2 = 0,

which is a useless forecast. In other sub-cases, it is unlikely that 〈Ŷ 2〉 is very small, hence

the correlation r is also very small.
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The MSE can be estimated by using EOFs. The error can be written into two parts:

ε2(y) = ε2q(y) + ε2R(y), (74)

where

ε2q(y) =
q∑

m=1

ε2mφ2
m(y) (75)

is MSE computed from the first q modes with

ε2m = 〈
(
Ym(t′)− Ŷm(t′)

)2〉, (76)

and the residual ε2R(y) is the contribution of higher modes to the MSE:

ε2R(y) =
∞∑

m=q+1

λmφ2
m(y). (77)

Apparently, this residue error depends on the truncation order, which, in turn, depends on

the resolution of data and the spatial scale of the field. The higher the data resolution, the

larger the q value. In practice, one uses discrete data and obtains only a finite number of

modes, say, q′. The prediction uses the first q modes among the q′ > q modes. Then, the

residual error may formally written as

q′∑

m=q+1

λY
mφ2

m(y).

This q′ is usually chosen to be K, the length of the data stream. However, when the data

streams are not sufficiently long, they cannot resolve the EOFs of very high order. Because

the higher order eigenvalues are close to each other, the computed EOFs can be very much

distorted from the true ones (See North’s rule-of-thumb, North et al., 1982). Thus, the above

estimate of residual error can be unreliable if the data streams are not sufficiently long.

Usually, the q modes of the predictand should resolve at least 50% total variance. The

residual error should be smaller than or comparable to the prediction error of the first q modes.

With the omission of the residual error in the computation, the error ε2q(y, t′) computed based

on the first q modes can be regarded as the lower bound of the MSE and its double may be

regarded as the upper bound of the MSE.
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The average MSE of the error field is the integral of ε2(y, t′)

ε2A =
1
A

∫

ΩY

dΩY ε2(y, t′), (78)

where A is the total area of the domain ΩY . When using the first q modes, the average MSE

error is

ε2A =
1
A

q∑

m=1

ε2m. (79)

This MSE’s unit is still [Y unit]2, as one expected.

The error for the mth mode is computed as following

ε2m = λY
m〈

(
Ym(t′)− Ŷm(t′)

)2〉

= λY
m〈

( q∑

k=1

v(k)
m V (k)(t′)−

q∑

k=1

v(k)
m ρkU

(k)(t′)

)2

〉

= λY
m〈

[ q∑

k=1

(
V (k) − ρkU

(k)
)

v(k)
m

]2

〉

= λY
m

q∑

k=1

(1− ρ2
k)

(
v(k)
m

)2
. (80)

The error is scaled down for higher EOF modes of the Y -field by its eigenvalues λY
m since

λY
m → 0 as m →∞, but scaled up by the CCA eigenvalues ρ2

k because 1− ρ2
k → 1 as k →∞.

If the correlations ρ2
k are large, say, close to one, then εm ≈ 0. If the predictability is low,

then the correlation is small. If the largest correlation is even less than 0.4, the factor 1− ρ2
1

is larger than 0.84, which is pretty large. If both the predictor and predictand are spatial

white noise, then there is no correlation between the two fields, and ρ2
k = 0 and

ε2m = λY
m,

and

ε2A =
∑
m

λY
m = 〈

∫

ΩY

dΩY Y 2(y, t) 〉.

Namely, the prediction error is equal to the total variance of the field and the prediction skill

is zero.
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6 OPTIMAL ENSEMBLE OF MANY FORECASTS

Different data sets of predictor and predictand may yield many forecasts, such as the forecasts

of precipitation using SST, soil moisture, SLP, SLP, or SST from different ocean basins, etc.

An optimal weight needs to be assigned to each forecasting result at every grid point in order

to form an optimal ensemble forecast. This is similar to the superensemble idea proposed by

Krishnamurti et al. (2000).

This section will show the method to find the optimal weights and the resulting predic-

tion error. The spectral method is again used in our computing. The use of the spectral

method requires stationarity assumption. Because of the requirement, which may be true in

a short period, the forecasting naturally deteriorates rapidly as the lead time of the prediction

increases.

The spectral representation of the predictand is

Y (y, t) =
∞∑

n=1

√
λY

n Yn(t)φn(y). (81)

Similarly, the forecaster’s representation is

Ŷ (y, t) =
∞∑

n=1

√
λY

n Ŷn(t)φn(y). (82)

Suppose that there are H forecasts. The ensemble forecast for the principal component Yn(t)

is

Ŷn(t) =
H∑

h=1

w(h)
n Ŷ (h)

n (t), (83)

where w
(h)
n , to be determined, is the weight for model k and mode n. The weights satisfy a

constraint
K∑

h=1

w(h)
n = 1, (84)

but they do not have to be all positive.

The MSE forecasting error is a function of y and is written as

E2(y) = 〈
(
Y (y, t)− Ŷ (y, t)

)2〉
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= 〈
[ ∞∑

n=1

(
Yn(t)−

H∑

h=1

w(h)
n Ŷ (h)

n (t)

) √
λY

n φn(y)

]2

〉. (85)

The principal components of different modes are independent. The errors Yn − Ŷn (n =

1, 2, 3, · · ·) are assumed to be independent. Then, the error function becomes

E2(y) =
∑
n

E2
nφ2

n(y), (86)

where

E2
n = λY

n 〈
(

Yn(t)−
H∑

h=1

w(h)
n Ŷ (h)

n (t)

)2

〉 (87)

is the MSE error for forecasting the nth principal component Yn(t).

The forecasting errors are caused by noisy data or inaccuracy of the forecasting model.

For each EOF coefficient, the forecasting errors for different prediction models are assumed

uncorrelated. With this assumption, one then has the following

E2
n = λY

n 〈
(

H∑

h=1

w(h)
n

(
Yn(t)− Ŷ (h)

n (t)
))2

〉

= λY
n

H∑

h=1

(
w(h)

n

)2 (
ε(h)
n

)2
, (88)

where
(
ε(h)
n

)2
= 〈

(
Yn(t)− Ŷ (k)

n (t)
)2〉. (89)

Minimization of ε2n expressed as above under the constraint (84) leads to the optimal weights.

The weight for a model is inversely proportional to the model’s forecasting error. Namely,

w(h)
n =

1/(ε(h)
n )2

∑H
l=1 1/(ε(l)n )2

. (90)

Then the resulted MSE error for the mode n is

E2
n =

(
H∑

h=1

1/(ε(h)
n )2

)−1

. (91)

That the errors from different prediction models are independent is an important assump-

tion. The different models usually mean different predictors, but the same prediction scheme.

Thus, to ensure the independence of the errors, one should choose the predictors which are
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not strongly correlated. This is intuitively correct, since the information from the similar

sources is redundant.

A special case is when all the models have the same amount of errors, (ε(0)
n )2. In this

case, the optimal weights are all equal to 1/H and the resulting error is

ε2n =
(ε(0)

n )2

H
. (92)

This is the conventional error-formula of homogeneous statistics.

The method of finding optimal weights here is slightly different from that of Krishnamurti

et al. (2000), though the purposes of the two methods are the same: optimal combination of

multiple forecasts. Krishnamurti et al. (2000) used the multivariate regression to determine

the weights, and they did not require the sum of the weight to be one. Since their regression

is for the best fit of the linear superensemble model to data, the forecasted expected values

are approximately the same as the observed expected values and hence the constraint of the

sum of all the weights equal to one is not needed. But in our case, the constraint is needed

to guarantee that the forecasted expected values is approximately the same as the observed

expected values. Otherwise, it may happen that the weights are too large, and, consequently,

the forecasted expected value is out of the range of possible climate and hence the forecast

is not valid. Despite the difference between the present method and that of Krishnamurti et

al. (2000), the results are actually close. We applied the formula (91) to the Y-component

of their Fig. 3(b), the formula (91) provides an RMSE 1.7, which is about the same as that

of Krishnamurti et al. (2000).

7 CHARACTERISTICS OF THE US PRECIPITATION

To predict the seasonal precipitation over the US, it is helpful to describe its basic characteris-

tics. Higgins et al. (1996) made an atlas of the US monthly precipitation, which is a valuable

reference for forecasting research. The US seasonal precipitation is influenced by many fac-

tors, including sea surface temperature (SST), sea level pressure (SLP), soil moisture, wind
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direction, wind speed, and relative humidity. The cold winter-air mass from Canada often

trigger heavy snow fall along the US snow-belt. The warmer SST over the eastern Pacific

often results in a positive precipitation anomaly along the coast of California, particularly

during an El Nino event. The anomaly of the Atlantic SST is often the energy source of

the Atlantic hurricane, which, when it lands in the east coast of the US, makes a significant

contribution to a monthly precipitation of the eastern states, including North and South

Carolinas, Virginia, and sometimes, Texas, Georgia, New York, and Maine.

The US annual precipitation has two centers. A center of a larger area is around the

central Gulf Coast states, including Louisiana, Mississippi, and Alabama. This area’s precip-

itation almost uniformly distributed from January to December, with slightly lower amount

in October and slightly higher amount in July and August. This area’s precipitation is

mainly influenced by the low pressure system over the northern part of the Gulf of Mexico.

The winter precipitation is affected by winter cyclones. The spring precipitation is shifted

a little toward the west, over Arkansas and Oklahoma, where the Canadian cold air often

brings down the moist transported from the Gulf of Mexico and triggers severe convective

storms. The PRE-STORM experiment of the summer of 1985 in Oklahoma was designed

to measure this type of precipitation. The summer precipitation is also influenced by the

weather systems of the Atlantic, such as large scale hurricanes.

Another center of a smaller area is the northwest US, including only the Pacific Northwest

coast states of Washington and Oregon. This region is small, but has the largest amount of

precipitation comparing to other regions of the US. This area’s precipitation, different from

that of the southeast center, is highly non-uniform from January to December. It has a strong

seasonal cycle, with maximum precipitation in winter, minimum in summer, and moderate

in spring and fall. The winter precipitation is mainly caused by the confront of the northwest

cold air jet from Alaska and the westerly Pacific jet. The latter carries much of water vapor.

Many winter days have more than 5 mm/day precipitation rate and make the area the wettest

region of the conterminous US. The westerly Pacific jet becomes weaker in summer and shifts
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to higher latitude, and hence it has stronger influence to British Columbia than Washington.

This shift dramatically reduces the supply of water vapor to the Washington and Oregon

area and hence reduces the precipitation amount.

Of course, interannual variations of SST also influence the US precipitation (Ropelewski

and Halpert, 1986; and others). During the El Nino event, the precipitation of California

has a strong positive winter anomaly, and that of the southeast US has a strong negative

spring anomaly. As the El Nino signal is the strongest in December, the CCA should yield a

high skill over California if the December’s SST is used to predict the January precipitation.

The CCA should also yield a high skill over the southeast US when the November-December-

January SST is used to predict the February-March-April precipitation. The cold Pacific SST

anomaly, such as La Nina, results in a negative winter precipitation anomaly in the southwest

US, while the cold events’ influence in other regions and seasons is pretty much scattered.

With the above information, one can be certain that the US precipitation is correlated to

the surface temperature (particularly, the SST) and pressure field. These properties provide

the predictability and our optimal forecasting scheme is designed to reflect the predictability

and to yield high quality prediction. Of course, our method can only reflect an linear ap-

proximation of the nonlinear relation between the SST and US precipitation. Although the

linear approximation has limitations, it has already provided meaningful results. Barnston

and Smith (1996) used the BP-CCA to predict the global precipitation using the global SST

and found significant prediction skill over North America at least in the winter seasons.

8 DATA SETS AND THE RESULTS OF THE US PRECIP-

ITATION FORECASTING

8.1 Data sets

Our predictor’s data set is the historical monthly SST reconstructed by Smith et al. (1996).

The spatial coverage is from 45◦S to 69◦N. The spatial resolution is 2◦ × 2◦. The temporal
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coverage is from January 1951 to December 2000. The temporal resolution is a month.

The data are available via ftp at: ftp://ftp.ncdc.noaa.gov/pub/data/ocean/rsst/. Our linear

regression scheme cannot resolve the nonlinear process imbedded in small scales. Thus, the

2◦×2◦ SST data are further averaged into a data set of 4-degree latitude by 6-degree longitude.

This average removes the noise of smaller scales.

The predictand’s data set is based upon the latest version of the Xie-Arkin global land

monthly precipitation data set as reported in Chen et al. (2001). The temporal coverage of

the precipitation data is from January 1948 to December 2000, but only the part overlapped

with the reconstructed SST period is used in our forecasting calculation, namely, January

1951 - December 2000. The spatial resolution is 2.5◦ × 2.5◦. The gridded data are resulted

from the interpolation of over 17,000 stations collected in the Global Historical Climatology

Network (GHCN) Version 2 and the Climate Anomaly Monitoring System (CAMS). The

data are available via ftp at: ftp.ncep.noaa.gov/pub/precip/50-yr.

The anomaly data are centered around to the 1961-1990 climatology. These anomaly data

are further detrended and standardized before they go into the EOF computing. After the

forecasting on the standardized data, the forecasting results (for dimensionless quantities)

are converted back to the anomaly data with dimension. However, the conversion uses only

the mean and standard deviation, and the trend is not included. The forecasting results are

then compared with the observed detrended anomaly field to assess the forecasting accuracy.

8.2 Forecasting results

The 50 years (1951-2000) SST and precipitation data are used in our forecasting experiments.

Hence 49 years data are used for computing EOFs for both SST and precipitation, and these

data are used to predict the remaining year’s precipitation. Our scheme requires that the

lengths of the data streams for both SST and precipitation be the same. The reconstructed

SST data are only for the preiod of 1951-2000, the precipitation data before 1951, although

available, are not used in our forecasting experiments. EOFs of the US precipitation are
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presented for two seasons: DJF (winter, Fig. 1) and JJA (summer, Fig. 2). For both

precipitation and SST fields we show only the first six EOF modes. The number of modes

used for actual forecasting is ten or another number.

It is well known that the characteristics of summer precipitation is very much different

from that of winter. The EOFs clearly reflect the difference. For example, the DJF EOF1

Figure 1: First six EOFs of US precipitation in DJF. The computation used the three-month

mean precipitation data, which had been detrended and standardized.
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Figure 2: Same as Fig. 1, except for the summer season JJA.

demonstrates a strong north-south pattern, while the JJA EOF1 supports a northwest-

southeast pattern. The differences are also reflected in higher modes.

The CCA patterns are linear combinations of the EOFs. The interesting part is that

the first two winter CCA patterns can sometimes be highly mode-selective, preferring only

a few from the six retained EOF modes. When performing the SON (SST field)- DJF

(precipitation) CCA analysis, the first SST CCA pattern is mainly contributed by 0.75 EOF1

and 0.61 EOF2. Since the first SST EOF is the El Nino mode, the first SST CCA pattern
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looks like the El Nino mode plus some North Pacific oscillation (see Fig. 3). The contribution

from other EOFs is negligible. The first precipitation CCA pattern is mainly contributed by

0.68 EOF1, 0.38 EOF2, and 0.34 EOF5 (Fig. 3). The contribution from other modes is small.

The northwest positive is mainly contributed by EOF1.

Figure 3: First two canonical correlation patterns for SON SST and DJF US precipitation.
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Figure 4: First two canonical correlation patterns for MAM SST and JJA US precipitation.

With this pair of CCA patterns, the CCA correlation between the SST and precipitation

field (i.e., ρ1) is 0.87, a pretty large value indicating that a good forecasting result is expected.

However, the summer CCA patterns are more uniformly distributed among the ten retained

EOFs and do not have apparent dominant modes. For example, the first precipitation CCA
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pattern selects not only EOF1 and EOF2 , but also EOF6, EOF7, EOF8 and EOF9 (Fig. 4).

Comparing Fig. 4(a) and Fig. 3(a), one can see that DJF’s first canonical pattern is much

more coherent than that of JJA. The same is true for the SST canonical patterns (see Figs.

3(b) and 4(b)). This reflects the difficulty of predicting the summer precipitation.

The 2000 DJF precipitation is predicted by the 1999 SON SST. The observed precipita-

tion anomaly is shown in Fig. 5(a) and the predicted anomaly in Fig. 5(b). The predicted

and the observed anomalies agree in most of the southeast area. The spatial pattern corre-

lation, defined by the formula (93) below, between the predicted and observed is 0.47. The

corresponding pattern correlation is higher for El Nino or La Nina years, but the year 2000

was neither an El Nino nor an La Nina year.

The DJF precipitation forecasts are made for every year from 1951 to 2000 by using

the previous season’s (i.e. SON) SST. The pattern correlation and the Heidke skill score are

shown in Fig. 6. Heidke score accounts for only the correct anomaly sign. Pattern correlation

accounts for both sign and amplitude. Only the perfect forecast, with both correct sign and

amplitude, has pattern correlation equal to one. Fig. 6 indicates that our forecasting results

are reasonable.

The spatial pattern correlation is the correlation between the forecasted (R̂i) and observed

anomalies (Ri) for a given season,

γ =
∑

i RiR̂i√∑
i R

2
i

√∑
i R̂

2
i

. (93)

When the pattern correlation reaches 0.4, the forecasted field has a good similarity to the

observed. Among our 50 years of forecasts, 29 years have the pattern correlation equal to

or greater than 0.4. Our maximum pattern correlation is 0.78, which indicates an extremely

good forecast (see Fig. 6(a)).

The Heidke score (HS) is another commonly used index to indicate the prediction skill

(van den Dool et al., 1997). The two-class HS is defined as

HS =
H − E

T −E
× 100, (94)
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Figure 5: Observed and predicted precipitation field of DJF 2000. The prediction was made

from the previous season SON SST. The time lag is hence one season. The unit is [mm]/[day].

where T is the total number of forecasts (i.e., the total number of grid points in our case), E

is the expected value of correct random forecasts (i.e., E = T/2), and H is the actual number

of correct forecasts. Since the two-class Heidke score is used, a forecast is defined as correct

if the forecasted anomaly has the same sign as the observed anomaly. The maximal value of

HS is equal to 100, when every forecast is correct. The HS score for random guessing is zero

because H = E, hence the random forecasting model does not have a skill. The HS reaches

its minimum value if every forecast has missed and the score is −100 × E/(T − E), which

is equal to -100. Our forecasts show positive skill scores in 45 years in the total of 50 years.

The maximum Heidke score is 76 (see Fig. 6(b)).
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Figure 6: Forecasting skills of using previous season SON SST to predict DJF precipitation:

(a) pattern correlation (defined by eq. (93)), and (b) Heidke score (defined by eq. (94)). The

EOFs were computed using the data from 1951-1999.

The summer precipitation skill is consistently lower than that for winter. Among the

50 years of experiments, there are only 18 years whose the pattern correlations are equal

to or greater than 0.4. The skill varies strongly with near-zero skill in many years, but the

maximum skill can still be high. In our example, the maximum skill is 0.83. The pattern

correlation for the 2000 prediction is very low and the forecast is not good. We have chosen

to show a forecast of a bit less-than-average skill. This is 1997. The training period of the

predictor and predictand is the 1951-1996. The 1997’s JJA precipitation is predicted using

the same year’s MAM SST. The observed JJA precipitation is shown in Fig. 7(a). The
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predicted result is shown in Fig. 7(b). Comparing these two figures, one can see that the

forecasting skills are mainly from the Northeast and Southwest. In almost 50% of the US,

the forecast has a wrong sign. Both the pattern correlation (0.18) between the forecasted

and observed and the Heidke skill score are low (almost zero) (the most right bar in Fig. 8).

This is a more detailed indication of the difficulty to forecast the summer precipitation.

Figure 7: The observed and the forecasted 1997 JJA precipitation. The predictor was the

1997 MAM SST.

Of course, for actual forecast one does not know the observed precipitation. The reliability

can be assessed by the expected value of prediction errors as discussed in Section 5. Fig. 9
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shows the prediction root mean square errors (RMSE) for two seasons: DJF and JJA. The

predictor is the previous season’s SST. The errors measure the mean square difference between

the actual and forecasted precipitation. In the region where the precipitation variance is large,

the error is also larger. The variance is proportional to the precipitation climatology. The

DJF error map has a Northwest-Southeast pattern (Fig. 9(a)) and the JJA error error map

has a Northeast-Southwest pattern. These patterns are consistent with US precipitation

climatology (Higgins et al., 1996).

Figure 8: Forecasting skills of using MAM SST to predict JJA precipitation: (a) pattern

correlation (defined by eq. (93)), and (b) Heidke score (defined by eq. (94)). The EOFs were

computed using the data from 1951-1996.

The RMSE error is the expected value. The regions of large errors are likely to have the
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wrong prediction. But for an individual forecast, the region of a large error may still have a

good forecast.

Figure 9: Expected values of the forecasting error when predicting the (a) DJF precipitation

using the previous season SON SST, and (b) JJA precipitation using the same year’s MAM

SST.

Optimal combination of two forecasts may enhance the forecasting skill, but one has to

be careful when doing so. Since both weights are positive, the optimal combination is an

interpolation process. This process prefers two good forecasts. Thus, one should combine the

two forecasts of reasonably high Heike scores. Fig. 10(c) shows the optimal combination of

the 2000 DJF precipitation forecasts from the previous season’s SST using the Pacific (Fig.

10(a)) and Atlantic oceans (Fig. 10(b)), respectively. The pattern correlation and Heidke
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Figure 10: a) Predicted 2000 DJF precipitation using the previous season SON Pacific SST,

(b) Predicted 2000 DJF precipitation using the previous season SON Atlantic SST, and (c)the

optimal ensemble forecast, which is the optimal combination of the CCA forecasting results

from (a) and (b). The spatial pattern correlations between the predicted and the observed

(Fig. 5a) are 0.43 for (a), 0.04 for (b) and 0.44 for (c).
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score for Pacific forecast are 0.43 and 35, respectively. And those for Atlantic are 0.04 and 31.

The optimally combined forecast is shown in Fig. 10(c). Its pattern correlation and Heidke

scores become 0.47 and 40.

Compared with the observed precipitation in Fig. 5(a), the combined forecast has a better

skill and is more similar to the observed than the two individual forecasts. If both forecasts

are very good, the optimally combined forecast can have a much higher skill.

9 SUMMARY AND CONCLUSIONS

This paper contains a new development of the CCA forecasting scheme. This further devel-

opment includes three parts. One is the inclusion of the area factor, and this procedure is

very important to reduce the noise from the data of higher latitudes. The second is the error

calculation formula, which estimates the mean square error of the forecasts and hence gives a

quantitative quality assessment of the forecasting, without using cross validation. The error’s

spatial distribution reflects the physical interaction mechanisms between the predictor and

predictand. The third is the optimal combination of the multiple forecasts. The third is

possible only when the error estimates are made in the second.

Our forecast experiments show that the new ensemble canonical correlation scheme ren-

ders a reasonable forecasting skill. For example, when using September-October-November

SST to predict the December-January-February precipitation of the next year, the spatial

pattern correlation between the observed and predicted are positive in 46 years among the

50 years of experiments. The positive correlations are equal to or greater than 0.4 in 29

years, which indicates excellent performance of the forecasting model. The forecasting skill

can be further enhanced when careful selection of ocean basins is made and more predictors

are used.

With the results presented in this paper, we may conclude that (i) the new improved

CCA scheme is an effective prediction tool, (ii) the error estimate of the new prediction tool
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is crucial at finding the optimal ensemble forecasting, (iii) other predictors, such as sea level

pressure and soil moisture, should be considered, (iv) the GCM simulation data may be used

to find the CCA statistical structure, and (v) further research is needed to determine the

optimal EOF truncation order.

Of course, precipitation over some areas are not directly related to SST anomalies, but

more related to SLP or other predictors. Zorita et al. (1992) also used CCA to study the

precipitation predictability of Iberian precipitation from both SLP and SST data. They

found that the dominant Iberian precipitation variability is caused by the westerly wind and

hence SLP patterns, but not the regional or remote SST anomalies. The same can be true

for some regions of the US precipitation. However, our new CCA model has much flexibility

and can easily include several predictors. Using multiple predictor can be an effective way to

increase the forecasting skill. Therefore, a careful tuning of the model and a careful selection

of predictors, such as soil moisture and SLP, can enhance the skill of prediction. Thus, our

next project is to include other predictors in our optimal ensemble forecasting model.

The prediction skill can be further enhanced by using an extrapolation type of optimal

combination of forecasts. Some of the forecasts with negative temporal correlation signs can

also help with enhancing the skill of the optimal ensemble forecasting skill. Some of the

weights of the forecasts can be negative. The weights are computed from a linear regression

scheme similar to that of Krishnamurti et al. (2000). The assumption of independence of

the forecasting errors of different models is no longer needed. This work is deferred to future

studies.
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APPENDIX A CONVENTIONAL CCA

This appendix describes the CCA scheme without consideration of the area-factor. This

is the scheme widely used in social sciences, finance, climatology, statistics, and other fields.

Emphasized here is the symmetry of the matrix, whose eigenvalue is the maximal correla-

tion between two fields. This symmetry guarantees that the eigenvalues are real numbers.

However, in many meteorological literature, this symmetry has been ignored.

A.1. Conventional CCA and an example

The random vectors X and Y represent climate parameters at different points. Linear

combinations of the elements of X and those of Y form two scalar random variables. The

linear combinations can have various kinds of physical interpretations, depending on how

a linear combination is made. For example, the following linear combination from uniform

weights

X̄ =
N∑

i=1

1
N

Xi

is the arithmetic average of the field and can be simply written as a′X, where

a′ = (1/N 1/N · · · 1/N) (a row-vecter), X = (X1 X2 · · · XN )′ (a column-vecter).

The objective of CCA is to find vectors a and b such that

ρ = Corr(U, V ) (95)

be maximized, where

U = a′X, V = b′Y (96)

are called canonical variables.

If the correlation is large, say, 0.7, we may say that the parameters X and Y have

high mutual predictability. Then, a multiple-variate regression procedure may be used for

prediction.

The CCA scheme is derived from

maxCov(U, V ), (97)
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under the condition: Var(U) = Var(V ) = 1. (98)

To proceed with the computing, the following covariance matrices are either given or com-

puted from data:

ΣXX = Cov(X,X), ΣY Y = Cov(Y,Y), ΣXY = Cov(X,Y), ΣY X = Σ′XY . (99)

The conventional CCA scheme requires that ΣXX and ΣY Y be of full rank and can be

diagonalized. However, because of the temporal length of the climatological data streams is

often shorter than the spatial data points, the covariance matrices are often not full rank.

Hence, the spectral method is used to overcome this problem, since the eigenvalue problem

of the CCA in the EOF space is a problem of symmetric matrix. As a matter of fact, the

CCA problem in the EOF space is symbolically the same as the SVD problem in the physical

space.

The CCA algorithm includes the following three steps.

Step 1. Diagonalize matrices ΣXX = P ′
XΛXPX and ΣY Y = P ′

Y ΛY PY , and find

Σ−1/2
XX , Σ−1/2

Y Y , Σ1/2
XX ,Σ1/2

Y Y ,

where Σm
XX is defined as P ′

XΛm
XPX for a real number m, and Σm

Y Y is similarly defined.

Step 2. Solve the eigenvalue problem

Σ−1/2
XX ΣXY Σ−1

Y Y ΣY XΣ−1/2
XX e = ρ2e. (100)

Step 3. Find the canonical variables. The linear combination vectors are

a = Σ−1/2
XX e, (101)

b =
1
ρ
Σ−1

Y Y ΣY XΣ−1/2
XX a. (102)

The canonical variables are

U = a′X, V = b′Y, (103)
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and their variances are equal to one. Their maximal correlation is ρ1, the first eigen-

value.

Example. Find the maximal correlation between the linear combinations of two two-

dimensional vectors

X = (X1, X2), Y = (Y1, Y2),

if the covariance matrices are as follows:

ΣXX =




1.0 0.5

0.5 1.0


 , (104)

ΣY Y =




1.0 0.3

0.3 1.0


 , (105)

ΣXY =




0.6 0.4

0.7 0.5


 . (106)

The first step is to find eigenvalues and eigenvectors of ΣXX and ΣY Y , so that the needed

matrices can be prepared. We have the following

Σ−1/2
XX =




1.1154 −0.2989

−0.2989 1.1154


 , (107)

Σ−1
Y Y =




1.0989 −0.3297

−0.3297 1.0989


 , (108)

Σ1/2
XX =




0.9659 0.2588

0.2588 0.9659


 . (109)

The second step is to find the CCA matrix and solve the CCA eigenvalue problem.

Σ−1/2
XX ΣXY Σ−1

Y Y ΣY XΣ−1/2
XX =




0.2393 0.3216

0.3216 0.4347


 (110)

The eigenvalues and eigenvectors of this matrix are

λ1 = ρ2
1 = 0.6731, λ2 = ρ2

2 = 0.0009, (111)
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and

[e1 e2] =




0.5955 0.8033

0.8033 −0.5955


 . (112)

The third step is to find the canonical variables. For the first eigen-mode, we have

[a1 a2] = Σ−1/2
XX [e1 e2] =




0.4241 1.0740

0.7180 −0.9043


 , (113)

[b1 b2] =
1
ρ1

Σ−1
Y Y ΣY XΣ−1/2

XX [a1 a2] =




0.8016 0.6755

0.4039 −0.9674


 . (114)

The canonical variables are

U1 = a′1X = 0.4241X1 + 0.7180X2, U2 = a′2X = 1.0740X1 − 0.9043X2, (115)

V1 = b′1Y = 0.8016Y1 + 0.4039Y2, V2 = b′2Y = 0.6755Y1 − 0.9674Y2. (116)

The maximal correlation between the canonical variables U1 and V1 is ρ1 = 0.8204. This

result can be verified by using the above two equations and the given covariance matrices at

the beginning of the example:

Cov(U1, V1) = 〈U1V1〉

= 0.4241 · 0.8016〈X1Y1〉+ 0.4241 · 0.4039〈X1Y2〉+

0.0.7180 · 0.0.8016〈X2Y1〉+ 0.7180 · 0.4039〈Y2Y2〉

= 0.8204.

This can also be verified in matrix notation:

[a1 a2]′ΣXY [b1 b2] =



〈U1V1〉 〈U1V2〉

〈U2V1〉 〈U2V2〉


 =




0.8204 0.0000

0.0000 0.0295


 . (117)

It is also interesting to see how the random variable X are represented by the canonical

variables. To do so, one has to find all the canonical variables, i.e., U1 and U2 in the present

case. The formula is

X = Σ1/2
XX(e1 e2)U, (118)
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where U = (U1 U2)′ is the vector of canonical variables. The above can be written as

X = U1E1 + U2E2, (119)

where

E1 = Σ1/2
XXe1 = (0.7831 0.6218)′, E2 = Σ1/2

XXe2 = (0.9301 − 0.3673)′ (120)

are called canonical patterns, as the physical field X is represented by the product between

the patterns and the canonical variables. These two vectors are usually not orthogonal.

Similarly, the random variable Y can be represented by the canonical variables and pat-

terns:

Y = V1F1 + V2F2, (121)

where

F1 = (0.9228 0.3853)′, F2 = (0.6444 − 0.7647)′. (122)
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APPENDIX B ANOTHER CCA SCHEME OF TWO CON-

TINUOUS FIELDS

This CCA algorithm retains the covariance functions in the physical space and is different

from the one explained in Sections 2 and 3, which is in the spectral space. When a climate

field is not expanded into spectral spaces, the current method may be a useful alternative to

the CCA algorithm described in Section 2.

The weight functions are expanded in terms of EOFs:

u(x) =
∑
n

unψn(x)/
√

λX
n , (123)

v(y) =
∑
m

vmφm(y)/
√

λX
m. (124)

The eigenfunctions are then determined by the coefficients un and vm, which are, in turn,

determined by linear algebraic equations.

With the above expansions, the equations of the eigenvalue problems (10) and (11) become

∫

ΩY

dΩY ΣXY (x,y)
∑
n

vnφn(y)/
√

λY
n + 2ζ

∑
m

um

√
λX

mψm(x) = 0, (125)
∫

ΩX

dΩX ΣXY (x,y)
∑
m

umψm(x)/
√

λX
m + 2η

∑

l

vl

√
λY

l φl(y) = 0. (126)

Using the orthonormal condition of the EOFs, one can derive the following from equation

(125) above:

um = − 1
2ζ

∑
n

Cmnvn, (127)

where

Cmn =
∫

ΩX

dΩX

∫

ΩY

dΩY ΣXY (x,y)
ψm(x)

λX
m

φn(y)
λY

n

. (128)

Substituting these two formulas into (126), one obtains the eigenvalue problem for the

coefficient-unit vector (v1, v2, · · ·),
∞∑

n=1

Mlnvn = λ vl. (129)
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where

λ = 4ζη, (130)

Mln =
∞∑

m=1

CmlCmn. (131)

The coefficient matrix [Mln] is symmetric, hence the eigenvalues are real and the eigenvectors

are orthogonal. Similarly, an eigenvalue problem for the unit vector (u1, u2, · · ·) can be

obtained.

The eigenvalue λ is directly related to the maximal correlation (ρ) between U and V . As

a matter of fact,

λ = ρ2. (132)

The proof is given below.

The correlation is

ρ = Corr(U, V )

=
∫

ΩX

dΩX

∫

ΩY

dΩY ΣXY (x,y)u(x)v(y)

=
∑
m,n

Cmnumvn. (133)

Formula (127) leads to
∑
m

u2
m = − 1

2ζ

∑
m

um

∑
n

Cmnvn, (134)

or

1 = − 1
2ζ

ρ, (135)

since (u1, u2, · · ·) is a unit vector.

Similarly, one can derive

1 = − 1
2η

ρ, (136)

The product of the formulas (135) and (136) yields

ρ2 = 4ζη = λ. (137)
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The formulas (135) and (136) also imply that the two Lagrange multipliers are equal to each

other,

η = ζ = −ρ

2
. (138)

This gives the physical meaning of the Lagrange multipliers, which is related to the correlation

between the two fields under consideration.
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APPENDIX C OPTIMAL EOF-TRUNCATION ORDER

Optimal truncation orders p and q should take values such that the observed data best

support the physics. An expansion of a higher order contains too much noise, and that of a

lower order leaves out some signal. From computational aspect, the first H CCA eigenvalues

ρh(h = 1, · · · ,H) are equal to one, where H = p + q −K + 1 and K is the temporal length

of the data streams. According to the CCA prediction error, the forecasting of the first h

modes have zero error, which is, of course, impossible. Thus, p and q cannot be too large. If

p = q, then the upper bound is p < (K − 1)/2. If there are 20 years of data, then p < 10. To

give some insight about the truncation, we include some further analysis below.

When EOFs form a complete basis for a linear space, then the corresponding field can be

exactly expressed by an infinite EOF series

X(x, t) =
∞∑

n=1

√
λX

n Xn(t)ψn(x). (139)

Of course, this is for a continuous field. The completeness condition of the EOF basis is

expressed by
∞∑

n=1

ψn(x)ψn(x′) = δ(x− x′). (140)

With a discrete field, the climate is contained in a finite dimensional space. Suppose

that there are JX discrete points. Then the field X must be contained in a JX -dimensional

vector space, denoted by J . The EOF expression of the field should contain as little noise

as possible. With true EOFs, the climate signal may be contained in a sub-space spanned

by Nc dimensional sub-space, denoted by Sc, where Nc < JX . Hence, J = Sc + Se, where

Se contains no climate signal. The EOFs computed from data are the approximate EOFs.

The first a few computed EOFs may agree with the true EOFs and contain climate signals.

The higher order EOFs, whose eigenvalues are close to each other, are far away from the true

EOFs, according to the North’s rule-of-thumb (North et al., 1982). Therefore, the sub-space

spanned by the computed EOFs intersects partly with Sc and partly with Se. The climate

signal sub-space is denoted by Ss (sample signal represented by the first p-EOFs) and Sn
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(sample noise represented by higher order EOFs). Only the EOFs in the signal sub-space are

used in the forecasting analysis. Some properties of Ss are described below.

Observed data value at only the station points or grid points. If the EOFs can form a

complete basis in a vector space JX , which is the total number of grid points for parameter

X, then the field can still be expressed by the EOFs:

X(i, t) =
JX∑

n=1

√
λX

n Xn(t)en(i). (141)

Here, the covariance matrix is defined by

〈X(i, t)X(j, t)〉 =
1
K

K∑

t=1

X(i, t)X(j, t), (142)

where K is the temporal length of the data stream. The vector en(i) is the nth eigenvector

of this covariance matrix, hence is the nth EOF. When K ≥ JX , the covariance matrix is of

full rank, and the EOFs form a complete space. The complete condition is

JX∑

n=1

en(i)en(j) = δij . (143)

It is also interesting to know that

1
JX

JX∑

n=1

Xn(s)Xn(t) = δst. (144)

and

1
K

K∑

t=1

Xm(t)Xn(t) = δmn. (145)

When K < JX , the rank of the covariance matrix is at most K. The covariance matrix

has at most K non-zero eigenvalues, and hence K definite eigenvectors. These eigenvectors

cannot form a complete basis in the JX -dimensional vector space. Hence the EOF expansion

of the field is equal to the field only in this K years, but they are not equal to each other in

other years. The equality that holds in the K-data years can be proved from the calculation

algorithm of the EOFs.

The EOFs are computed from

J∑

j=1

(
1
K

K∑

t=1

X(i, t)X(j, t)

)
en(j) = λnen(i). (146)
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The left hand side of the above may be written as

K∑

t=1

X(i, t)
1
K

J∑

j=1

(X(j, t)en(j)) =
K∑

t=1

X(i, t)
1
K

√
λnXn(t). (147)

Combining the above two equations, one obtains

K∑

t=1

X(i, t)
1
K

Xn(t) =
√

λnen(i). (148)

The principal components satisfy that

1
K

K∑

n=1

Xn(s)Xn(t) = δst (149)

and

1
K

K∑

t=1

Xm(t)Xn(t) = δmn. (150)

Thus, the inverse matrix of

1
K

[Xn(t)]

is

[Xn(t)]′ .

With this inversion, eq. (148) becomes

X(i, t) =
K∑

n=1

√
λX

n Xn(t)en(i). (151)

According to North’s rule-of-thumb, when two sample-eigenvalues are close to each other,

the sampling error for EOFs is very large and the mixture of two or more true EOFs into a

sample EOF occurs. The EOFs are defined as the best approximation of the field by a linear

combination of EOFs. The best approximation is measured by the ensemble average. That

is,

〈
J∑

j=1

(
X(j, t)−

p∑

n=1

√
λnXn(t)ψn(j)

)2

〉. (152)

When this is approximated by K years of data, we have the following problems:

(a) The approximation most likely has a large error beyond the K years.
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(b) The mixture of two or more modes destroys the best approximation. Suppose that the

sample EOF e4(j) is a mixture of ψ4(j) and ψ5(j). Then, there exist two constants a4

and a5 such that

e4(j) = a4ψ4(j) + a5ψ5(j).

The projection of the field onto e4 becomes the projections onto ψ4 and ψ5. Because

of a4 and a5, the ψ4 and ψ5 projections are not orthogonal and hence not the best

approximation. North’s rule-of-thumb indicates that the first a few sample EOFs do

not likely have mixture and hence should be used as a good approximation to true

EOFs. This is equivalent to say that one takes only the EOFs whose eigenvalues are

sufficiently separated. These are usually the first a few sample EOFs. The higher order

EOFs contain the smaller scales which require more than K years of data to resolve.

This is a type of aliasing phenomenon. Large sampling size resolves smaller spatial

scales.

Unfortunately, there is no definite rule to determine the optimal truncation order p. The

C-rule is used in this paper. For a given constant C, if

λn

λn − λn+1

√
2/K < C, (153)

then the nth EOF is included. The optimal value p is equal to the maximal n. In this paper

we choose C = 3 for both SST and precipitation. Examples of the separation of egenvalues

for SST and US precipitation are displayed in Fig. 11. Thus, the SON global SST may use 11

modes. However, there is a strong evidence of mode mixture for the SON global Pacific SST

between the 12th and 13th modes. Thus it is preferable to discard the modes whose order

is higher than 12. The DJF precipitation’s mode mixture happens at mode 11. So, modes

1-10 may be used for forecasting. However, our CCA algorithm requires the same number of

modes for both predictor and predictand. Hence we have chosen 10 modes from both SST

and precipitation EOFs.

52



Figure 11: Separation of eigenvalues: (a) SON global SST, and (b) DJF US precipitation.

The first 10 EOFs of the US precipitation are used in the forecasting experiments.
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